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Abstract – In AESA for narrowband signals, shifting 

the phase of a signal has the same effect of delaying 

the signal. Phase shifters based on such principles 

provide phase delays. Phase delays for broadband 

applications result in dispersion of the signal – 

different frequency components of the signal 

experience different time delays. Despite of having 

many advantages such as better directivity, higher 

gain, and beam-steering, traditional electrical 

controlled phase array antennas face serious 

problems working with large bandwidth. One of the 

most difficult obstacles to overcome is the “beam-

squint” phenomenon i.e. beam direction of the array 

changes across the RF signal’s bandwidth. For 

applications with large bandwidth and high 

frequency requirements, true time delay beam-

forming is a promising candidate. The true time delay 

chip can delay the signal by discrete amounts of time, 

with inherent advantages of large bandwidth, 

compactness and light-weight. More importantly, 

they can operate squint-free with wideband, high 

frequency signals, thus avoiding the most significant 

drawback of the traditional electrical beamformers. 

Keywords: True Time Delay, Beamformer, Phased 

array, AESA. 

I. INTRODUCTION 

Over the last fifty years, the engineering 

community recognized the need for true time delay 

in phased array antennas. However, the subject has 

become increasingly important in the last decade, 

as radar systems were required to achieve higher 

resolution, and wider scan angles. A classic phased 

array uses a Transmit/Receive module on each of 

its antenna elements to control the phase (as well as 

the amplitude) of the transmitted/received 

elemental wave. This works well for a system with 

a narrow RF bandwidth (for few MHz). However, 

when wide bandwidths (short pulses) are involved, 

a phased-steered array has a frequency dependent 

beam shape, resulting in wider beams, temporally 

distorted pulses and loss of gain, as well as spatial 

and temporal resolutions [1]. 

Future radar systems will increasingly be 

applying electronically steering for multi functions 

and multimode operation. One of them may be re-

using of apertures for different applications, 

including communication and electronic support 

applications. The scarcity in antenna locations 

poses further advantages to antenna co-location or 

antenna sharing. The sharing of antenna apertures 

by different systems implies that the antenna, 

including the front-end and beamformer, has to 

cover the full bandwidth of the systems for which it 

has to serve. This requirement is in agreement with 

a further increase in bandwidth of the individual 

systems, in order to improve performance. A 

relative bandwidth per system between one and two 

octaves may be required. 

This „squint‟ phenomenon, which makes 

phased-steered antennas unacceptable for many 

modern and future applications, can be eliminated 

by replacing the phase delays in the system with 

true time delays. One of the preferred RF solutions 

is the Rotman lens [2], which uses RF guided 

waves in a specially designed geometrical structure 

to produce these delays for a number of discrete 

beams. Rotman lenses have been and are still being 

employed in many radar systems. However, the 

need for smaller volume and lower weight, as well 

as for still wider bandwidth, has made this option 

less attractive. Alternatively, true time delay may 

be implemented digitally, using fast (many Giga-

Samples/sec) Analog to Digital converters on every 

element with FPGAs based digital circuitry. This 

power-hungry technology, though, has not yet 

reached maturity but may become a viable solution 

in the future.  

 

II. ACTIVE PHASED ARRAY  

 

Microwave phased-array antennas are important 

in both military and civilian applications. However, 

wide bandwidth is not available employing 

traditional electrical beamforming networks due to 

their intrinsic narrow band nature. In general, the 

beamforming of the antenna can be implemented as 

an optical system, an RF system or as a hybrid 

system.  

A. Wideband Phased Array Beamforming  

Consider a uniformly spaced linear array with 

element spacing 𝑑 as show in Fig.1. Assuming the 

array is in the far field of the received signal, the 

wavefront is approximately planar. Furthermore, if 

the signal arrives from an angle θ off the antenna 

boresite, then according to the geometry in Fig. 1 
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the wave must travel an additional distance d sin(θ) 

to arrive at each successive element. Assuming 

free-space, this means the delay in arrival to each 

element is 

∆𝑡 = 𝑑 𝑠𝑖𝑛𝜃/𝑐     . . . . . .  (1) 

 
 

Fig 1. Illustration of additional travel distance 

when signal arrives from an angle θ for a linear 

array with element spacing d. 
 

Array theory tends to discuss things in phase 

rather than delay, so we can convert the delay 

experienced by the signal into a phase shift at a 

given frequency 

 

∆∅ = 2𝜋𝑓∆𝑡 =
2𝜋𝑑𝑠𝑖𝑛𝜃

𝜆
     . . . . . .  (2) 

 

It has been shows in [3] that the array factor of 

a uniformly spaced linear array is 

 

𝐺𝑎 𝜃, 𝜆 =
𝑠𝑖𝑛2  

𝑁Δ𝜙

2
 

𝑁2𝑠𝑖𝑛2  
Δ𝜙

2
 

     . . . . . .  (3) 

 

𝐺𝑎 𝜃, 𝜆 =
𝑠𝑖𝑛2  

𝑁𝜋𝑑𝑠𝑖𝑛𝜃

𝜆
 

𝑁2𝑠𝑖𝑛2  
𝜋𝑑𝑠𝑖𝑛𝜃

𝜆
 

     . . . . . .  (4) 

 

The array can be steered by applying a phase 

shift such that Δø = 0 at the angle of interest. The 

desired phase shift can be applied using either 

phase shifters, which produce a constant phase 

shift, which produce a frequency dependent phase 

shift. 

The traditional method of steering a phased 

array is with phase shifters. To steer the array to a 

desired angle 𝜃0we must choose  Δ𝜙0 such that Δø 

−Δ𝜙0 = 0. Since the phase shift at fixed 𝜆0,  

becomes a fixed and Δ𝜙0  is defined as 

 

Δ𝜙0 =  2𝜋𝑑 𝑠𝑖𝑛𝜃0/𝜆0     . . . . . .  (5) 

 

where 𝜆0 is the wavelength this phase shift is 

based on. Note that for any other wavelength 

Δ𝜙 − Δ𝜙0 ≠  0. If we substitute (Δ𝜙 − Δ𝜙0 ) in 

place of  in array factor equation we obtain the 

following expression for the array factor of an 

array steered with phase shifters: 

 

𝐺𝑎 𝜃, 𝜆 

=
𝑠𝑖𝑛2 𝑁𝜋𝑑(𝑠𝑖𝑛𝜃/𝜆 −  𝑠𝑖𝑛𝜃0/ 𝜆0) 

𝑁2𝑠𝑖𝑛2 𝜋𝑑(𝑠𝑖𝑛𝜃/𝜆 −  𝑠𝑖𝑛𝜃0/ 𝜆0) 
    . . . . . .  (6) 

 

The beam position changes with frequency 

when steered using the phase shifter method. 

 

To steer the array using time-delay, substitute 

the desired angle Δ𝜙 into equation (2) to obtain Δt. 

Then, the applied phase shift Δ𝜙0 is given by 

equation (5). Again, substituting (Δ𝜙 − Δ𝜙0) into 

equation (6) we obtain the expression for the array 

pattern when steered with time-delay: 

𝐺𝑎 𝜃, 𝜆 

=
𝑠𝑖𝑛2 𝑁𝜋(𝑑/𝜆)(𝑠𝑖𝑛𝜃 −  𝑠𝑖𝑛𝜃0) 

𝑁2𝑠𝑖𝑛2 𝜋(𝑑/𝜆)(𝑠𝑖𝑛𝜃 −  𝑠𝑖𝑛𝜃0) 
    . . . . . .  (7) 

 

A useful computation is to figure out how much 

deviation from the nominal frequency the system 

can tolerate before the beam is pointed away from 

the target. To do this, we first develop an equation 

for the beam squint as a function of frequency. The 

squinted beam peak occurs at angle θp when sin θp/ 

λ = sin θ0/ λ0. The beam squint can be defined as 

the difference between the actual peak and the 

desired peak: 

 

𝜃𝐵𝑆 = 𝜃𝑃 − 𝜃0 

= 𝑠𝑖𝑛−1  
𝑓0

𝑓
sin 𝜃0 − 𝜃0     . . . . . .  (8) 

 

Ref. [1] provides an approximate equation for 

the 3 dB beamwidth of an array, θ3dB = 102/N, 

where N is the number of elements in the array. 

Setting the beam squint equal to the 3 dB 

beamwidth and solving for frequency leads to 

 

𝑓 =  
𝑓0 sin 𝜃0

sin 𝜃0 ±
102

𝑁

     . . . . . .  (9) 

 

This equation will tell that what frequencies 

(above and below 𝑓0) beam will have moved off the 

target by the 3 dB beamwidth. A similar equation is 

derived by requiring that the beam squint be much 

less than the beamwidth; the result is a limit on the 

bandwidth of the system. Note that this equation 

does not depend on wavelength or frequency, just 

on the length of the array. 

 

𝐵 ≪
𝑐

𝐿𝑠𝑖𝑛𝜃0 
    . . . . . .  (10) 

 

B. Time Delay Beamforming  

 

Active phased array architecture with True 

Time delay behind every radiating element for 
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main beamforming to enable broadband 

performance is modelled and various radiation 

patterns have been simulated. This system 

approach may brings a number of additional 

requirements for active array subsystems. One of 

the important requirement is the bandwidth of the 

active antenna. This bandwidth requirement arises 

for antenna element, the transmit/receive module 

components and for the beamformer. 

 

For linear phased array antenna, radiating 

elements with individual phase control, the far field 

pattern along the direction of θ can be expressed as 

𝐸 𝜃, 𝑡 =  𝐴𝑚

𝑀

𝑚=1

exp⁡[𝑖 Ψ𝑚

+ (𝑓/𝑐)𝑑 𝑠𝑖𝑛𝜃 ] . . . . . .  (11) 

 

where 𝐴𝑚  is pattern of the individual element, 

Ψ𝑚  is the time delay t, and d is the distance 

between radiating elements. By varying the 

progressive time delay excitation, the beam can be 

oriented in any direction to give a scanning array. 

For example, to point the beam at angle 𝜃0 , Ψ𝑚  is 

set to the following value: 

 

Ψ𝑚 = −𝑚2𝜋(𝑓/𝑐)𝑑 𝑠𝑖𝑛𝜃0 . . . . . .  (12) 

 

𝑡𝑚 (𝜃0) = −𝑚(𝑓/𝑐)𝑑 𝑠𝑖𝑛𝜃0/𝑐  . . . . . .  (13) 

 

The delay line pitch (length difference of delay 

lines for adjacent antenna elements) of an equal 

space interval linear array or the one-dimensional 

time delay interval of an equal space interval two-

dimensional array can be calculated using the 

following equation 

∆𝑙 = 𝑑 𝑠𝑖𝑛𝜃0/𝑐 . . . . . .  (14) 

 

where c is the electromagnetic wave speed of 

propagation in the waveguide core material. 

 

III. IMPLEMENTATION METHOD 

Traditional electronic methods can also be used 

to implement TTD. Coaxial cable can be used for 

long delays, but loss and cable weight make it 

somewhat impractical. In addition, it can be 

expensive to make low-dispersion phase-matched 

cables. Shorter distances can be made using 

microstrip lines on circuit boards. This is also fairly 

lossy, but can be counteracted by putting amplifiers 

on the circuit boards. Recent advances in 

semiconductor fabrication have enabled much 

shorter and finer delays to be manufactured in a 

very small space, useful for high frequency arrays. 

Such advances enable TTD using micro 

electromechanical systems (MEMS) and 

monolithic microwave integrated circuits (MMICs) 

[5]. 

 

MEMS devices can handle very wide 

bandwidths but can suffer power handling 

problems and have moderate insertion loss. Active 

MMIC devices overcome the large insertion losses 

but must use power to do so and are limited by the 

bandwidth of the active devices [5]. 

 

An example MEMS-based TTD module is 

discussed this device is a six-bit TTD module 

capable of operating from DC to 40 GHz. The 

delay times range from 106.9 to 193.9 ps at 5.8 ps 

intervals. This range is suitable to support beam 

steering at higher frequencies. Insertion loss of the 

device is fairly well matched among the delay 

states and averages about 4 dB at 30 GHz, which is 

quite good. Some kinds of MEMS switches can get 

stuck when high power signals are passed through 

them, making them difficult to use in transmit 

applications [6]. 

MMIC-based TTD device is considered. This is 

a six-bit device capable of operation from 2 to 20 

GHz. The device achieved a 145 ps total delay with 

the smallest bit representing 2.5 ps, which is 

comparable to the MEMS part. Insertion loss of the 

MMIC device is much worse however, with as 

much as 25 dB at 20 GHz. Obviously, passive 

MMIC TTD modules are impractical for high 

frequencies [7]. 

 Active MMIC devices allow the addition of 

amplifiers throughout the delay line to combat 

losses and even provide gain. This device operated 

over 0.8 to 8 GHz and had 20 dB of gain. It was an 

8-bit module with a 4 ps least significant bit and 

two 256 ps most significant bits. Also included was 

a 6-bit attenuator for gain matching and array 

tapering. The whole module was 13 mm × 9 mm 

and also contained a digital IC designed by the Air 

Force Research Laboratory for control. Measured 

results of the array steered to 260 using the TDU 

modules [8]. 

 

fig. 2. Beam steering with phase shifter for 

instantaneous bandwidth of ± 180 MHz 
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fig. 3. Beam squint of ±0.6
0
 due to frequency 

dependency of phase shifter for f0± 180 MHz 

 

If phase shifters are used, the beam would 

actually steer between three adjacent resolution 

cells during the pulse, blurring the image. Such 

applications would obtain a great benefit from TTD 

beam steering. A plot of the array factor for three 

different frequencies is given in Fig. 2 for 

instantaneous bandwidth of ±180 MHz. Note how 

the beam position changes with frequency when 

steered using the phase shifter method.  

 

fig. 4. Beam steering with TTD unit for 

instantaneous bandwidth of ± 180 MHz 

A plot of the array factor for the same three 

frequencies is given in Fig. 4 Note how the beams 

are now all pointing at 30
0
 and it is simply the 

beamwidth that varies with frequency.  

 

 

 

fig. 5. TTD unit is independent of frequency 

which does not show beam squint problem in 

phased array  

The plots in Fig. 4-5 clearly show the benefits of 

true time delay beam steering: wide instantaneous 

bandwidths can be accommodated without beam 

squint. Since resolution improves with wider 

bandwidth, imaging radar and SAR tend to use 

wide bandwidths to improve image quality. 

IV. CONCLUSION 

Phase delays for broadband applications result in 

dispersion of the signal – different frequency 

components of the signal experience different time 

delays. This paper derives the expressions 

describing beam squint and shows how the array 

factor changes when using phase shifters versus 

time-delay. Then, a discussion of implementation 

techniques for true time delay (TTD) is conceived, 

closing with simulated results of an array steered 

with time-delay units (TDUs). To steer the array 

using time-delay, Note how the beams are now all 

pointing at same angle and it is simply the 

beamwidth that varies with frequency. 
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